PG电子游戏科技有限公司-无人机竞技与智能科技解决方案

i1pcban.jpg i1pcban.jpg

企业动态

面向目标核查印证的异构无人机群协同方法pdf

2025-06-10 

分享到

  本发明适用于无人机技术领域,提供了一种面向目标核查印证的异构无人机群协同方法,上述方法包括:建立异构无人机群协同规划模型,对第一组不同载荷种类的无人机的路径规划,实施目标侦查,得到待确认目标,进而派出第二组无人机进行待确认目标的核查。本发明综合考虑多种不同类型载荷的无人机的特点,合理利用不同载荷类型的无人机分阶段进行目标侦查,侦查效率高,不会造成侦查资源的浪费,符合实际应用需求。

  (19)国家知识产权局 (12)发明专利 (10)授权公告号 CN 113110595 B (45)授权公告日 2022.06.21 (21)申请号 9.6 CN 109144110 A,2019.01.04 (22)申请日 2021.05.12 CN 105302153 A,2016.02.03 CN 107886201 A,2018.04.06 (65)同一申请的已公布的文献号 CN 102768518 A,2012.11.07 申请公布号 CN 113110595 A CN 110442143 A,2019.11.12 (43)申请公布日 2021.07.13 WO 2008073069 A2,2008.06.19 庞强伟,等.多无人机协同侦察任务规划方 (73)专利权人 中国人民解放军陆军工程大学 法研究综述.《电讯技术》.2019,第59卷(第6期), 地址 050003 河北省石家庄市新华区和平 Jie-ru Fan,等.Analysis on MAV/UAV 西路97号无人机工程系 cooperative combat based on complex (72)发明人 李文广谭威胡永江杨森 network.《Defence Technology》.2020,第16卷 赵月飞高喜俊史凤鸣张可馨 张耀中,等.异构型多UAV协同侦察最优化任 林志龙党雪江 务决策研究.《西北工业大学学报》.2017,第35卷 (74)专利代理机构 石家庄国为知识产权事务所 (第3期), 13120 Qiangwei Pang,等.Multi-target 专利代理师 李荣文 oriented UAV reconnaissance path planning.《AEMCME》.2019, (51)Int.Cl. 叶青松,等.多无人机编队协同目标分配的 G05D 1/10 (2006.01) 两阶段求解方法.《合肥工业大学学报(自然科学 (56)对比文件 版)》.2015,第38卷(第10期), CN 104699102 A,2015.06.10 审查员 吴垠 CN 110426043 A,2019.11.08 CN 102147255 A,2011.08.10 权利要求书3页 说明书12页 附图5页 (54)发明名称 面向目标核查印证的异构无人机群协同方 法 (57)摘要 本发明适用于无人机技术领域,提供了一种 面向目标核查印证的异构无人机群协同方法,上 述方法包括:建立异构无人机群协同规划模型, 对第一组不同载荷种类的无人机的路径规划,实 施目标侦查,得到待确认目标,进而派出第二组 无人机进行待确认目标的核查。本发明综合考虑 B 多种不同类型载荷的无人机的特点,合理利用不 5 9 同载荷类型的无人机分阶段进行目标侦查,侦查 5 0 1 效率高,不会造成侦查资源的浪PG电子手机版费,符合实际应 1 3 1 用需求。 1 N C CN 113110595 B 权利要求书 1/3页 1.一种面向目标核查印证的异构无人机群协同方法,其特征在于,包括: 获取初始目标信息及第一组无人机的信息;其中,所述第一组无人机包括第一载荷种 类的无人机; 根据所述初始目标信息及所述第一组无人机的信息,在约束条件下,以无人机总滞空 时间最短为目标函数建立异构无人机群协同规划模型; 对所述异构无人机群协同规划模型求解,得到所述第一组无人机中各个无人机的目标 路径; 所述第一组无人机中各个无人机按照对应的目标路径进行侦查,获取得到待确认目标 信息; 根据所述待确认目标信息,确定第二组无人机的信息,并根据所述待确认目标信息及 所述第二组无人机的信息,确定所述第二组无人机中各个无人机的目标路径;其中,所述第 二组无人机包括第二载荷种类的无人机。 2.如权利要求1所述的面向目标核查印证的异构无人机群协同方法,其特征在于,所述 根据所述初始目标信息及所述第一组无人机的信息,在约束条件下,以无人机总滞空时间 最短为目标函数建立异构无人机群协同规划模型,包括: 根据所述初始目标信息建立任务环境空间模型; 根据所述任务环境空间模型及所述第一组无人机的信息,在约束条件下,以无人机总 滞空时间最短为目标函数建立异构无人机群协同规划模型。 3.如权利要求2所述的面向目标核查印证的异构无人机群协同方法,其特征在于,所述 根据所述初始目标信息建立任务环境空间模型,包括: 根据所述初始目标信息,采用Voronoi图建立所述任务环境空间模型。 4.如权利要求3所述的面向目标核查印证的异构无人机群协同方法,其特征在于,所述 约束条件包括: k 其中,X 为i架无人机是否访问了第k个节点,Y 为第i架无人机是否属于第u类载荷的 i iu 无人机,U为无人机载荷的种类数,NS为无人机的总数;pαth 为第i架无人机的路径,nd 为 i ik 第i架无人机的路径中的第k个节点, 为第i架无人机的路径中第nd 个节点到 ik 第ndi(k+1)个节点之间的距离, 为第u类载荷的无人机的最大航程,n 为path 中节点的 i i 总数;N 为威胁源个数,N 为目标个数,T为目标集合,V为Voronoi图的顶点集合, E T 2 2 CN 113110595 B 权利要求书 2/3页 为E的子集,E为Voronoi图边的集合。 5.如权利要求1至4任一项所述的面向目标核查印证的异构无人机群协同方法,其特征 在于,所述对所述异构无人机群协同规划模型求解,得到所述第一组无人机中各个无人机 的目标路径,包括: 采用并行蚁群算法对所述异构无人机群协同规划模型求解,得到所述第一组无人机中 各个无人机的目标路径。 6.如权利要求5所述的面向目标核查印证的异构无人机群协同方法,其特征在于,所述 采用并行蚁群算法对所述异构无人机群协同规划模型求解,得到所述第一组无人机中各个 无人机的目标路径,包括: 获取所述第一组无人机中各载荷类型对应的目标数量; 根据所述第一组无人机中各载荷类型对应的目标数量初始化蚂蚁子种群; 计算子种群中各个蚂蚁的路径及总滞空时间; 更新信息素; 每隔预设数量代,交流不同子种群的信息素; 确定是否达到预设迭代次数;若达到预设迭代次数,则输出所述第一组无人机中各个 无人机的目标路径;若未达到所述预设迭代次数,则跳转至所述计算各个子种群中各个蚂 蚁的路径及总滞空时间的步骤继续执行。 7.如权利要求5所述的面向目标核查印证的异构无人机群协同方法,其特征在于, 所述并行蚁群算法中,信息素的交流公式为: m m best Ph =(Ph+Ph )/2 m best 其中,Ph 为第m个子种群所对应的信息素,Ph 为当前适应度值最小的蚂蚁子种群对 应的信息素。 8.一种面向目标核查印证的异构无人机群协同装置,其特征在于,包括: 参数获取模块,用于获取初始目标信息及第一组无人机的信息;其中,所述第一组无人 机包括第一载荷种类的无人机; 模型建立模块,用于根据所述目标信息及所述第一组无人机的信息,在约束条件下,以 无人机总滞空时间最短为目标函数建立异构无人机群协同规划模型; 第一路径规划模块,用于对所述异构无人机群协同规划模型求解,得到各个无人机的 目标路径; 待确认目标确定模块,用于所述第一组无人机中各个无人机按照对应的目标路径进行 侦查,获取得到待确认目标信息; 第二路径规划模块,用于根据所述待确认目标信息,确定第二组无人机的信息,并根据 所述待确认目标信息及所述第二组无人机的信息,确定所述第二组无人机中各个无人机的 目标路径;其中,所述第二组无人机包括第二载荷种类的无人机。 9.一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上 运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7 任一项所述的面向目标核查印证的异构无人机群协同方法的步骤。 10.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在 于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的面向目标核查印证 3 3 CN 113110595 B 权利要求书 3/3页 的异构无人机群协同方法的步骤。 4 4 CN 113110595 B 说明书 1/12页 面向目标核查印证的异构无人机群协同方法 技术领域 [0001] 本发明属于无人机技术领域,尤其涉及一种面向目标核查印证的异构无人机群协 同方法。 背景技术 [0002] 近年来,随着无人机技术发展,无人机以其尺寸小、重量轻、成本低、隐蔽性好、机 动性高等优势,在情报收集、电子侦查、电子攻击等多个军事领域得到了越来越广泛的应 用。多无人机协同侦查是指多架无人机相互配合,相互协作,按照合理有效的协同策略,以 较小的代价共同完成侦查任务。 [0003] 现有技术中,多无人机协同侦查规划多针对单一类型载荷的多台无人机,未考虑 多种不同类型载荷的无人机,造成了侦查资源的浪费,不符合实际应用需求。 发明内容 [0004] 有鉴于此,本发明实施例提供了一种面向目标核查印证的异构无人机群协同方 法,以解决现有技术中多无人机协同侦查多针对单一类型载荷,造成侦查资源的浪费,不符 合实际应用需求的问题。 [0005] 本发明实施例的第一方面提供了一种面向目标核查印证的异构无人机群协同方 法,包括: [0006] 获取初始目标信息及第一组无人机的信息;其中,第一组无人机包括第一载荷种 类的无人机; [0007] 根据初始目标信息及第一组无人机的信息,在约束条件下,以无人机总滞空时间 最短为目标函数建立异构无人机群协同规划模型; [0008] 对异构无人机群协同规划模型求解,得到第一组无人机中各个无人机的目标路 径; [0009] 第一组无人机中各个无人机按照对应的目标路径进行侦查,获取得到待确认目标 信息; [0010] 根据待确认目标信息,确定第二组无人机的信息,并根据待确认目标信息及第二 组无人机的信息,确定第二组无人机中各个无人机的目标路径;其中,第二组无人机包括第 二载荷种类的无人机。 [0011] 本发明实施例的第二方面提供了一种面向目标核查印证的异构无人机群协同装 置,包括: [0012] 参数获取模块,用于获取初始目标信息及第一组无人机的信息;其中,第一组无人 机包括第一载荷种类的无人机; [0013] 模型建立模块,用于根据目标信息及第一组无人机的信息,在约束条件下,以无人 机总滞空时间最短为目标函数建立异构无人机群协同规划模型; [0014] 第一路径规划模块,用于对异构无人机群协同规划模型求解,得到各个无人机的 5 5 CN 113110595 B 说明书 2/12页 目标路径; [0015] 待确认目标确定模块,用于第一组无人机中各个无人机按照对应的目标路径进行 侦查,获取得到待确认目标信息; [0016] 第二路径规划模块,用于根据待确认目标信息,确定第二组无人机的信息,并根据 待确认目标信息及第二组无人机的信息,确定第二组无人机中各个无人机的目标路径;其 中,第二组无人机包括第二载荷种类的无人机。 [0017] 本发明实施例的第三方面提供了一种终端设备,包括存储器、处理器以及存储在 存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如本发明实施 例第一方面提供的面向目标核查印证的异构无人机群协同方法的步骤。 [0018] 本发明实施例的第四方面提供了一种计算机可读存储介质,计算机可读存储介质 存储有计算机程序,计算机程序被处理器执行时实现如本发明实施例第一方面提供的面向 目标核查印证的异构无人机群协同方法的步骤。 [0019] 本发明实施例提供了一种面向目标核查印证的异构无人机群协同方法,包括:建 立异构无人机群协同规划模型,对第一组不同载荷种类的无人机的路径规划,实施目标侦 查,得到待确认目标,进而派出第二组无人机进行待确认目标的核查。本发明实施例综合考 虑多种不同类型载荷的无人机的特点,合理利用不同载荷类型的无人机分阶段进行目标侦 查,侦查效率高,不会造成侦查资源的浪费,符合实际应用需求。 附图说明 [0020] 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述 中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些 实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些 附图获得其他的附图。 [0021] 图1是本发明实施例提供的一种面向目标核查印证的异构无人机群协同方法实现 的流程示意图; [0022] 图2是本发明实施例提供的异构无人机侦查示意图; [0023] 图3是本发明实施例提供的蚂蚁蚁群觅食过程示意图; [0024] 图4是本发明实施例提供的第一组无人机的目标路径示意图; [0025] 图5是本发明实施例提供的第二组无人机的目标路径示意图; [0026] 图6是本发明实施例提供的第一组无人机的目标路径规划采用不同算法的适应度 值曲线是本发明实施例提供的面向目标核查印证的异构无人机群协同装置的示意 图; [0028] 图8是本发明实施例提供的终端设备的示意图。 具体实施方式 [0029] 以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具 体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体 细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电 6 6 CN 113110595 B 说明书 3/12页 路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。 [0030] 为了说明本发明的技术方案,下面通过具体实施例来进行说明。 [0031] 参考图1,本发明实施例提供了一种面向目标核查印证的异构无人机群协同方法, 包括: [0032] S101:获取初始目标信息及第一组无人机的信息;其中,第一组无人机包括第一载 荷种类的无人机; [0033] S102:根据初始目标信息及第一组无人机的信息,在约束条件下,以无人机总滞空 时间最短为目标函数建立异构无人机群协同规划模型; [0034] S103:对异构无人机群协同规划模型求解,得到第一组无人机中各个无人机的目 标路径; [0035] S104:第一组无人机中各个无人机按照对应的目标路径进行侦查,获取得到待确 认目标信息; [0036] S105:根据待确认目标信息,确定第二组无人机的信息,并根据待确认目标信息及 第二组无人机的信息,确定第二组无人机中各个无人机的目标路径;其中,第二组无人机包 括第二载荷种类的无人机。 [0037] 本发明实施例中采用多种不同载荷类型的无人机对目标进行侦查。首先采用第一 组无人机进行目标侦查,对第一组无人机的路径进行规划,无人机侦查完成后确定待确认 目标,针对性的再派出第二组无人机对待确认目标进行侦查,综合考虑多种不同类型载荷 的无人机的特点,合理利用不同载荷类型的无人机分阶段进行目标侦查,侦查效率高,不会 造成侦查资源的浪费,符合实际应用需求。 [0038] 参考图2,未知任务区间内,假设有设有N 个目标,NS架不同载荷的侦察无人机,要 T 求依据不同侦察无人机任务载荷的性能,在任务区域内进行合理目标分配及路径规划,从 而完成协同侦察及核查验证任务。 [0039] 无人机:根据无人机携带的载荷类型,将其划分为电子类侦察无人机和图像类侦 察无人机。无人机集合表示为SUAV={SUAV ,SUAV},其中,SUAV 表示电子类侦察无人机,数 1 2 1 量为N ,SUAV 表示图像类侦察无人机,数量为N ,总无人机数为NS=N +N 。 S1 2 S2 S1 S2 [0040] 目标:根据目标的属性特点,需要利用不同的载荷进行侦察确认。本申请将目标分 为三类即Target 、Target 、Target 。目标Target数量为N 个,目标Target 数量为N 个,目 1 2 3 1 T1 2 T2 标Target数量为N 个。 3 T3 [0041] 任务:侦察任务分为3种任务模式,可根据表1的对应关系表示。即任务Task 指的 1 是电子类侦察无人机SUAV完成对目标Target 的侦察任务;任务Task指的是图像类侦察无 1 1 2 人机SUAV 完成对目标Target 的侦察任务;任务Task 指的是电子类、图像类侦察无人机 2 2 3 SUAV 、SUAV共同完成对目标Target 的侦察任务,总任务数:N =N +N +2*N ,其对应关系 1 2 3 T T1 T2 T3 如表1所示。 [0042] 表1载荷资源‑需求对应表 [0043] 序号 无人机种类 功能 目标 任务 1 SUAV1 电子类 Target1 Task1 2 SUAV2 图像类 Target2 Task2 3 SUAV ‑SUAV 综合类 Target Task 1 2 3 3 7 7 CN 113110595 B 说明书 4/12页 [0044] 其中,假定各类型侦察载荷性能良好,目标点在载荷的侦察范围内,即认为完成侦 察任务;各无人机作匀速飞行。 [0045] 首先,确定第一组无人机的各个无人机的规划路径,决策变量为第一组无人机中 各个无人机的目标路径: [0046] X={path i=1,2,..NS} i [0047] 其中,path 为第一组无人机中第i架无人机的目标路径。 i [0048] 现代战争中,武器手段通常能够做到“发现即摧毁”,在敌我双方对峙时,优先掌握 敌目标情报信息,就能优先掌控战场态势及主动权,从而先敌发起攻势。因此,快速获得情 报信息,在现代战场中显得至关重要。因此本申请以总滞空时间最短为目标函数对模型求 解,得到第一组无人机中各个无人机的目标路径。 [0049] 目标函数的计算公式为: [0050] [0051] 其中,n 为第i架无人机的路径path 中的节点总数;NS为无人机的总数量; i i 为第i架无人机的路径path 中第nd 个节点到第nd 个节点之间的距离; i ik i(k+1) va 为第i架无人机的速度。 i [0052] 一些实施例中,S102可以包括: [0053] S1021:根据初始目标信息建立任务环境空间模型; [0054] S1022:根据任务环境空间模型及第一组无人机的信息,在约束条件下,以无人机 总滞空时间最短为目标函数建立异构无人机群协同规划模型。 [0055] 一些实施例中,S1021可以包括: [0056] S10211:根据初始目标信息,采用Voronoi(泰森多边形)图建立任务环境空间模 型。 [0057] Voronoi图是以几何学方法为依据,能够有效将地理信息中点对象和区域以拓扑 结构表示出来,因其具有很好的全局规划特性,在无人机任务规划领域被广泛使用于相关 问题求解。因此,本申请采用Voronoi图,来建立任务环境空间模型,将无人机可能的PG电子手机版路径以 图的方式表达出来。 [0058] [0059] T为目标集合,P为威胁源的集合,V为Voronoi图的顶点集合,E为Voronoi图边的集 合,从V中的节点指向T中的节点,表示所有可能的路径。 [0060] 一些实施例中,约束条件可以包括: [0061] 8 8 CN 113110595 B 说明书 5/12页 [0062] [0063] [0064] [0065] k 其中,X 为i架无人机是否访问了第k个节点,Y 为第i架无人机是否属于第u类载 i iu 荷的无人机,U为无人机载荷的种类数,NS为无人机的总数;path 为第i架无人机的路径, i nd 为第i架无人机的路径中的第k个节点, 为第i架无人机的路径中第nd 个 ik ik 节点到第nd 个节点之间的距离, 为第u类载荷的无人机的最大航程,n 为path 中 i(k+1) i i 节点的总数;N 为威胁源个数,N 为目标个数,T为目标集合,V为Voronoi图的顶点集合, E T 为E的子集,E为Voronoi图边的集合。 [0066] 所有的无人机的飞行路径由多个节点组成,组成路径的节点为目标和Voronoi图 的顶点的集合,且任意相邻节点可达。 [0067] 一些实施例中,S103可以包括: [0068] S1031:采用并行蚁群算法对异构无人机群协同规划模型求解,得到第一组无人机 中各个无人机的目标路径。 [0069] 一些实施例中,S1031可以包括: [0070] S10311:获取第一组无人机中各载荷类型对应的目标数量; [0071] S10312:根据第一组无人机中各载荷类型对应的目标数量初始化蚂蚁子种群; [0072] S10313:计算子种群中各个蚂蚁的路径及总滞空时间; [0073] S10314:更新信息素; [0074] S10315:每隔预设数量代,交流不同子种群的信息素; [0075] S10316:确定是否达到预设迭代次数;若达到预设迭代次数,则输出第一组无人机 中各个无人机的目标路径;若未达到预设迭代次数,则跳转至计算各个子种群中各个蚂蚁 的路径及总滞空时间的步骤继续执行。 [0076] 一些实施例中,并行蚁群算法中,信息素的交流公式可以为: [0077] m m best Ph =(Ph+Ph )/2 [0078] m best 其中,Ph 为第m个子种群所对应的信息素,Ph 为当前适应度值最小的蚂蚁子种 群对应的信息素。 [0079] 蚁群算法的基本思想是通过定义具有数学性质的人工蚁群和信息素来寻找最优 路径,并进行数学抽象仿真。蚁群的觅食过程,可以简化成图3所示形式。 [0080] 由于开始时各边的信息素一样,通过信息素积累、更新而寻找最优路径需要花费 较多时间,严重影响了算法的寻优速率。异构无人机在执行侦察任务时,不同的目标需要不 同的载荷进行侦察,需要对目标进行区分。 9 9 CN 113110595 B 说明书 6/12页 [0081] 为有效提高算法寻优效率,本申请提供了一种并行的多种群多信息素的蚁群算 法。将蚁群整体分为若干个子群体,本申请将蚁群按一定比例分为两个群体,即子群S和子 群T,子群S和子群T各占了1/2的蚁群。子群S中的蚂蚁统一从一点出发,根据目标函数求解 两点间最短路径,子群T中的蚂蚁统一从另一方向出发,根据目标函数求解两点间最短路 径。两群体间需要相对独立完成各自的任务,直到某个子群找到最短路径为止,蚁群算法求 解结束。这样保证在求解过程中,即使蚁群陷入局部最优,也能通过多子群来增加蚁群多样 性,从而满足任务要求。 [0082] 由于本申请不是单路径最短问题,需要重新设计信息素,本申请的信息素结构如 下: [0083] Ph=[Ph ,Ph ,Ph ] 1 2 3 [0084] 其中,Ph 为N ×N 规格的矩阵,表示任意两个目标点之间的信息素。Ph 为1×N 规 3 T T 2 T 格的矩阵,表示起点到目标点之间的信息素。Ph 为1×N 规格的矩阵,为不同目标点在当前 1 T 侦查阶段分配给不同飞机是所参考的信息素。 [0085] 算法在求解模型过程如下: [0086] 1、目标节点的划分,即将目标点分配给不同的无人机。节点选择的公式如下: [0087] [0088] 其中 表示第i个目标点对应的信息素, 表示为第i个目标点对应的随 机数。α,β为信息素因子和随机因子。根据 安排每一个无人机的侦查目标,各无人机的 侦查数量相同。 [0089] 2、安排每一架飞机从起点出发访问的第一个节点。节点选择依据为 [0090] [0091] 其中, 表示第i个目标点对应的信息素, 表示为第i个目标点对应的 随机数, 为起点到第i个目标的最短距离。α,β,γ为信息素因子,随机因子以及启发式因 子。 [0092] 3、每一架飞机侦查完当前目标后,下一目标的选择。节点选择依据为 [0093] [0094] 其中, 表示第i个目标点对应的信息素, 表示为第i个目标点对应的 随机数, 为当前目标点w到第i个目标的最短距离。α,β,γ为信息素因子,随机因子以及 启发式因子。 [0095] 每个迭代周期结束后,需要更新当前种群的信息素,更新公式如下: [0096] 10 10 CN 113110595 B 说明书 7/12页 [0097] 其中,na为蚂蚁的数量;ρ表示信息素挥发系数,1‑ρ表示循环结束后保存下来的信 息素的比例,ρ∈[0,1);Δτ 代表当前循环结束后所有m只蚂蚁信息素增加总量; 表 sum 示蚂蚁k在选择第i个节点后,对应的信息素增加值。 [0098] 可同样采用上述方法对第二组无人机中各个无人机的路径进行规划,具体不再赘 述。为减小滞空之间,若第二组无人机中包含第一组无人机中的部分无人机,则可将第一侦 查阶段对应目标路径的终点,作为下一侦查阶段路径的起点。 [0099] 由于待确认目标数量可能较少,也可根据待确认目标的类型选择特定载荷种类、 特定的无人机针对性的实时侦查。 [0100] 下面结合具体实施例对上述方法进行详细说明。 [0101] 本申请采用的仿真实验平台为AMD Ryzen 5 3500U/8GB/64位Win10操作系统的华 为荣耀MagicBook2019笔记本,编程工具为MatlabR2016b(64位)。 [0102] 算法参数设置为NS=2,N =48,N =12,威胁代价的权重k=0.5,蚂蚁数m=50,ρ= E T 0.3,Q=2,α=1,β=1,蚂蚁寻径循环次数NCmax=100,迭代次数Generation=200,参考表 2。 [0103] 表2并行蚁群算法参数 [0104] N N N m ρ Q α β S E T 2 48 12 50 0.3 2 1 1 [0105] 假设无人机每小时飞行100km,续航时间为6h。在长宽各100km的任务范围内,随机 生成12个目标,第一、二、三类目标点各3个。两个携带不同载荷的无人机为一组,协同对12 个目标执行侦察及核查任务。利用上述并行蚁群算法得到合理目标分配和目标路径。 [0106] 参考图4,第一阶段两种载荷的无人机(第一组无人机)共同完成了对12个人目标 的侦察。其中,电子侦察无人机对6个侦察目标进行了侦察,确认一类目标点2个,待确认二 类目标3个,待确认三类目标1个。图像类侦察无人机对另外6个侦察目标进行了侦察,确认 二类目标点2个,待确认一类目标1个,待确认三类目标3个,参考表3。 [0107] 表3第一组无人机侦查结果 [0108] 序号 Taget Taget Taget 1 2 3 SUAV 2 3 1 1 SUAV 2 1 3 2 [0109] 参考图5,第二阶段对未确认的目标进行侦察确认(第二组无人机侦查),电子侦察 无人机对第一阶段未确认的进行确认,其中,一类目标点2个,三类目标点3个。图像类侦察 无人机对第一阶段未确认目标点进行确认,其中二类目标点3个、三类目标点1个,参考表4。 [0110] 表4第二组无人机侦查结果 [0111] 序号 Taget1 Taget2 Taget3 SUAV1 2 0 3 SUAV2 0 3 1 [0112] (1)第一阶段侦查:两种载荷的无人机,对12个不同类型的目标,依据并行蚁群算 法求解的目标分配及航路,协同完成了对所有目标的分类,对未确认的目标进行下阶段的 核查。 11 11 CN 113110595 B 说明书 8/12页 [0113] (2)第二阶段侦察:完成第一阶段侦察后,将SUAV1航迹中未识别的目标,作为 SUAV2第二阶段的侦察对象。同理,SUAV2航迹中未识别的目标,作为SUAV1第二阶段的侦察 对象。通过两种载荷的交叉验证,从而完成对所有目标的侦察确认。 [0114] 由以上可知,两类无人机在完成侦察任务时能够针对不同目标类型,制定相应载 荷规划、目标分配和路径规划,在侦察资源有限的情况下,利用无人机之间的协同运用,最 大化侦察载荷资源。 [0115] 分别采用本申请中提供的并行蚁群算法、原始蚁群算法、遗传算法及粒子群算法 求解第一组无人机的目标路径,其适应度函数的迭代曲线所示。不同算法的最终 路径目标值度和总滞空时间见表5。 [0116] 表5不同算法对比 [0117] [0118] 由以上可知,相比于其他三个算法,本申请提供的并行蚁群算法求解最短目标路 径值减少了10%,耗时最短,能够有效的提升侦察效率,可实现更优完成协同侦察异构目标 任务的目的。 [0119] 应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程 的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限 定。 [0120] 参考图7,本发明实施例还提供了一种面向目标核查印证的异构无人机群协同装 置,包括: [0121] 参数获取模块21,用于获取初始目标信息及第一组无人机的信息;其中,第一组无 人机包括第一载荷种类的无人机; [0122] 模型建立模块22,用于根据初始目标信息及第一组无人机的信息,在约束条件下, 以无人机总滞空时间最短为目标函数建立异构无人机群协同规划模型; [0123] 第一路径规划模块23,用于对异构无人机群协同规划模型求解,得到第一组无人 机中各个无人机的目标路径; [0124] 待确认目标确定模块24,用于第一组无人机中各个无人机按照对应的目标路径进 行侦查,获取得到待确认目标信息; [0125] 第二路径规划模块25,用于根据待确认目标信息,确定第二组无人机的信息,并根 据待确认目标信息及第二组无人机的信息,确定第二组无人机中各个无人机的目标路径; 其中,第二组无人机包括第二载荷种类的无人机。 [0126] 一些实施例中,模型建立模块22可以包括: [0127] 第一模型建立单元221,用于根据初始目标信息建立任务环境空间模型; [0128] 第一模型建立单元222,用于根据任务环境空间模型及第一组无人机的信息,在约 束条件下,以无人机总滞空时间最短为目标函数建立异构无人机群协同规划模型。 12 12 CN 113110595 B 说明书 9/12页 [0129] 一些实施例中,第一模型建立单元221可以包括: [0130] 环境空间模型建立子单元2211,用于根据初始目标信息,采用Voronoi图建立任务 环境空间模型。 [0131] 一些实施例中,约束条件可以包括: [0132] [0133] [0134] [0135] [0136] k 其中,X 为i架无人机是否访问了第k个节点,Y 为第i架无人机是否属于第u类载 i iu 荷的无人机,U为无人机载荷的种类数,NS为无人机的总数;path 为第i架无人机的路径, i nd 为第i架无人机的路径中的第k个节点, 为第i架无人机的路径中第nd 个 ik ik 节点到第nd 个节点之间的距离, 为第u类载荷的无人机的最大航程,n 为path 中 i(k+1) i i 节点的总数;N 为威胁源个数,N 为目标个数,T为目标集合,V为Voronoi图的顶点集合, E T 为E的子集,E为Voronoi图边的集合。 [0137] 一些实施例中,第一路径规划模块23可以包括: [0138] 蚁群求解单元231,用于采用并行蚁群算法对异构无人机群协同规划模型求解,得 到第一组无人机中各个无人机的目标路径。 [0139] 一些实施例中,蚁群求解单元231可以包括: [0140] 初始化参数获取子单元2311,用于获取第一组无人机中各载荷类型对应的目标数 量; [0141] 子种群初始化子单元2312,用于根据第一组无人机中各载荷类型对应的目标数量 初始化蚂蚁子种群; [0142] 路径计算子单元2313,用于计算子种群中各个蚂蚁的路径及总滞空时间; [0143] 信息素更新子单元2314,用于更新信息素; [0144] 信息素交流子单元2315,用于每隔预设数量代,交流不同子种群的信息素; [0145] 迭代次数判断子单元2316,用于确定是否达到预设迭代次数;若达到预设迭代次 数,则输出第一组无人机中各个无人机的目标路径;若未达到预设迭代次数,则跳转至计算 各个子种群中各个蚂蚁的路径及总滞空时间的步骤继续执行。 [0146] 一些实施例中,并行蚁群算法中,信息素的交流公式可以为: [0147] m m best Ph =(Ph+Ph )/2 [0148] m best 其中,Ph 为第m个子种群所对应的信息素,Ph 为当前适应度值最小的蚂蚁子种 群对应的信息素。 13 13 CN 113110595 B 说明书 10/12页 [0149] 所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功 能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的 功能单元、模块完成,即将终端设备的内部结构划分成不同的功能单元或模块,以完成以上 描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可 以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的 单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单 元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述装置 中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。 [0150] 图8是本发明一实施例提供的终端设备的示意框图。如图8所示,该实施例的终端 设备4包括:一个或多个处理器40、存储器41以及存储在存储器41中并可在处理器40上运行 的计算机程序42。处理器40执行计算机程序42时实现上述各个面向目标核查印证的异构无 人机群协同方法实施例中的步骤,例如图1所示的步骤S101至S105。或者,处理器40执行计 算机程序42时实现上述面向目标核查印证的异构无人机群协同装置实施例中各模块/单元 的功能,例如图7所示模块21至25的功能。 [0151] 示例性地,计算机程序42可以被分割成一个或多个模块/单元,一个或者多个模 块/单元被存储在存储器41中,并由处理器40执行,以完成本申请。一个或多个模块/单元可 以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序42在终 端设备4中的执行过程。例如,计算机程序42可以被分割成参数获取模块21、模型建立模块 22、第一路径规划模块23、待确认目标确定模块24及第二路径规划模块25。 [0152] 参数获取模块21,用于获取初始目标信息及第一组无人机的信息;其中,第一组无 人机包括第一载荷种类的无人机; [0153] 模型建立模块22,用于根据初始目标信息及第一组无人机的信息,在约束条件下, 以无人机总滞空时间最短为目标函数建立异构无人机群协同规划模型; [0154] 第一路径规划模块23,用于对异构无人机群协同规划模型求解,得到第一组无人 机中各个无人机的目标路径; [0155] 待确认目标确定模块24,用于第一组无人机中各个无人机按照对应的目标路径进 行侦查,获取得到待确认目标信息; [0156] 第二路径规划模块25,用于根据待确认目标信息,确定第二组无人机的信息,并根 据待确认目标信息及第二组无人机的信息,确定第二组无人机中各个无人机的目标路径; 其中,第二组无人机包括第二载荷种类的无人机。 [0157] 其它模块或者单元在此不再赘述。 [0158] 终端设备4包括但不仅限于处理器40、存储器41。本领域技术人员可以理解,图8仅 仅是终端设备的一个示例,并不构成对终端设备4的限定,可以包括比图示更多或更少的部 件,或者组合某些部件,或者不同的部件,例如终端设备4还可以包括输入设备、输出设备、 网络接入设备、总线可以是中央处理单元(Central Processing Unit,CPU),还可以是其他 通用处理器、数字信号处理器(Digital  Signal  Processor,DSP)、专用集成电路 (Application  Specific  Integrated  Circuit,ASIC)、现场可编程门阵列(Field‑ Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、 14 14 CN 113110595 B 说明书 11/12页 分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器 等。 [0160] 存储器41可以是终端设备的内部存储单元,例如终端设备的硬盘或内存。存储器 41也可以是终端设备的外部存储设备,例如终端设备上配备的插接式硬盘,智能存储卡 (Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进 一步地,存储器41还可以既包括终端设备的内部存储单元也包括外部存储设备。存储器41 用于存储计算机程序42以及终端设备所需的其他程序和数据。存储器41还可以用于暂时地 存储已经输出或者将要输出的数据。 [0161] 在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记 载的部分,可以参见其它实施例的相关描述。 [0162] 本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单 元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟 以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员 可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出 本申请的范围。 [0163] 在本申请所提供的实施例中,应该理解到,所揭露的终端设备和方法,可以通过其 它的方式实现。例如,以上所描述的终端设备实施例仅仅是示意性的,例如,模块或单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件 可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或 讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦 合或通讯连接,可以是电性,机械或其它的形式。 [0164] 作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。 [0165] 另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以 是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单 元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。 [0166] 集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用 时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方 法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,的计算机程序 可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方 法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形 式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计 算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只 读存储器(Read‑Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载 波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根 据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立 法和专利实践,计算机可读介质不包括是电载波信号和电信信号。 [0167] 以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例 15 15 CN 113110595 B 说明书 12/12页 对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施 例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者 替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含 在本申请的保护范围之内。 16 16 CN 113110595 B 说明书附图 1/5页 图1 17 17 CN 113110595 B 说明书附图 2/5页 图2 图3 18 18 CN 113110595 B 说明书附图 3/5页 图4 图5 19 19 CN 113110595 B 说明书附图 4/5页 图6 图7 20 20 CN 113110595 B 说明书附图 5/5页 图8 21 21

  2、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问加。

  3、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。

  4、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档

  山东土地资本投资集团及权属公司招聘笔试题库及答案详解(夺冠).docx

  山东土地资本投资集团及权属公司招聘笔试题库及答案详解(典优).docx

  山东土地资本投资集团及权属公司招聘笔试题库及答案详解(全优).docx

  山东土地资本投资集团及权属公司招聘笔试题库附答案详解(轻巧夺冠).docx

  山东土地资本投资集团及权属公司招聘笔试题库及答案详解(必刷).docx

  《形势与政策》大作业:怎样正确理解全过程人民民主的历史逻辑、实践逻辑与理论逻辑.docx

  原创力文档创建于2008年,本站为文档C2C交易模式,即用户上传的文档直接分享给其他用户(可下载、阅读),本站只是中间服务平台,本站所有文档下载所得的收益归上传人所有。原创力文档是网络服务平台方,若您的权利被侵害,请发链接和相关诉求至 电线) ,上传者