PG电子游戏科技有限公司-无人机竞技与智能科技解决方案

i1pcban.jpg i1pcban.jpg

企业动态

蚁群算法与无人机 郑世飞 5 8ppt

2025-07-13 

分享到

  

蚁群算法与无人机 郑世飞 5 8ppt(图1)

  无人机(unmanned aerial vehicle或drone)无人机是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。

  20世纪20年代最早出现,当时是作为训练用的靶机使用的。是一个许多国家用于描述最新一代无人驾驶飞机的术语。从字面上讲,这个术语可以描述从风筝,无线飞弹从发展来的巡航导弹,但是在军方的术语中仅限于可重复使用的比空气重的飞行器。

  蚁群优化算法最初用于解决TSP问题,经过多年的发展,已经陆续渗透到其他领域中,比如图着色问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题等。蚁群算法在若干领域己获得成功的应用,后来又运用到人工智能中如无人驾驶汽车、无人机等..

  而蚁群算法在无人机运用中,又运用了蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息遗留

  的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的

  而在无人机领域中又提出了再励学习蚁群算法(Reinforcemant Leaming Ant Colony Algorithm,RLACA);讨论了多子群蚁群优化思想,提出了有效降低算法复杂度的预编序号策略和控制配队策略。在基本蚁群算法基础之上,围绕信息素更新机制,针对当前改进算法蚁群信息利用不充分的问题,提出了信息素的再励学习(PL)更新机制。仿真实验证明,引入RL机制的RLACA算法体现出更快的收敛速度和更强的全局搜索能力。讨论了多子群蚁群算法,给出了求解不同子问题的异质多子群算法框架,分析了算法的复杂性;针对“子问题结合”空间搜索的指数级复杂性问题,提出了预编序号策略和控制配队策略,有效地将算法复杂度降低到特定规模。

  开展了蚁群算法在无人机协同多任务规划中的应用研究。根据分层递阶控制的思想,将无人机协同多任务规划问题分解为协同多任务分配问题和航路规划问题,有效降低了原问题求解的复杂性。针对协同多任务分配问题,对通用CMTAPPG电子网页版问题模型进行扩展,建立了协同多任务分配模型。在此基础上,基于异质多子群蚁群算法框架,引入预编序号策略,设计了基于分工机制的任务分配蚁群算法。仿真结果表明,基于分工机制的任务分配蚁群算法能够有效解决复杂约束条件下的协同多任务分配问题,并具有对动态变化任务需求响应的敏捷性。针对复杂环境下无人机航路规划问题,引入概率地图对战场环境进行拓扑化描述,在此基础上运用引入信息素再励更新机制的蚁群算法进行航路规划,提高了算法的求解效率。仿真实验结果表明算法具有较高的规划速度和良好的求解精度

  就如何提高无人机对未来不确定战场环境的自主作战能力,通过分析蚁群中兵蚁的搜捕行为,设计了与无人机行为特性相适应的分布式搜捕蚁群算法(Distributed Raid-Pattern Ant Colony Algorithm,DRPACA)。DRPACA采用无中心节点的体系结构,保证了复杂环境下系统的稳定性与生存能力。DRPACA以蚂蚁作为无人机代理,针对环境不确定性、无人机有限探测能力与多机任务效能最大化的矛盾,蚂蚁之间采取基于信息素的间接通信和基于数据链的直接通信,